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Introduction 

Monitoring wastewater quality parameters is essential for a wide range 

of current and emerging industries in order to meet requirements of 

local governing agencies, and the Water and Wastewater Treatment 

Market is expected to reach a value of $242.6 billion by 2027[1].  Water 

quality in the U.S. is legislated through the Clean Water Act to reduce 

the discharge of pollutants into rivers, lakes, or oceans. Industrial 

wastewaters are often cited as the main sources of inorganic heavy 

metal pollutants (such as arsenic, chromium, and selenium) which are 

toxic and non-biodegradable [2]. These wastewaters are generated 

from industries such as electric and nuclear power plants, pulp and 

paper, iron and steel, mines and quarries, agricultural and food 

operations, and chemical manufacturing [3]. Depending on the origin 

and discharge of the wastewaters, the precise concentrations and 

regulatory chemical constituents of concern will vary.  

In situ, real-time wastewater composition monitoring would be of 

significant value for improving process control, efficiency, and costs of 

operation. The method of ion chromatography currently plays a large 

role in wastewater analysis, but it is burdened by sample preparation 

requirements, lab measurement times, overlapping detection regimes, 

and the generation of additional chemical wastes [4]. There are 

currently few technical options for a robust monitoring system, with 

simple operation, that allow for detection with speciation and 

quantification of multiple wastewater constituents in real time.  
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Raman spectroscopy is a powerful analytical 

technique that quickly gives highly specific 

information for the analysis of chemical 

compounds in a non-destructive manner. Raman-

active species exhibit spectra with distinct peaks 

and provide “fingerprint” information on the 

vibrational transitions within a molecule by 

uniquely characterizing sample volumes in bulk. 

Raman systems are easily portable and signals can 

be transmitted by optical fibers over long 

distances for remote analysis. These features make 

Raman spectroscopy ideal for implementing a 

robust, automated molecular identification system.  

Ordinarily, dealing with a broad spectral range of 

multiple Raman-active species requires significant 

expert post-processing and interpretation. 

However, systems that deploy automated 

machine learning (ML) models and algorithms can 

significantly streamline Raman data processing 

and vastly improve the quantity and quality of 

information from available data. ML, a sub-

category of artificial intelligence, is a data-driven 

approach to analysis, where instead of fitting a 

physics-based theory to the data output, an 

algorithm is used to leverage relationships within 

the data to generate correlating models. ML is 

therefore suitable for situations where the system 

outputs are unknown, hard to understand, or time-

consuming to process by a human analyst. ML 

models can learn from spectral data, identify 

patterns, and be able to make decisions with 

minimal human intervention. In this case, the 

models rapidly process large amounts of complex 

spectral data in order to classify chemical 

compounds and determine their concentrations.  

This application note describes the classification 

and quantification of thirteen chemical 

wastewater constituents with the use of a real-time 

Raman spectroscopy monitoring instrument. ML 

models are tested on training spectral data and 

then applied to a wastewater sample collected 

from a fossil fuel plant flue gas desulfurization 

(FGD) effluent stream.  

Methods 

Data presented here were collected using a 

Sporian Microsystems SpecIQ™ Raman Fluid 

Composition Monitoring System. Key system 

specifications are shown in Table 1. The system is 

designed to operate in one of two possible modes: 

(1) as an autonomous monitoring device that 

measures and applies machine-learning-based 

algorithms to provide classification of chemical 

constituents and quantified concentrations to 

higher level control systems, and (2) as a user-

operated instrument with specific feature/function 

control options. In this example, we use the latter 

mode to generate training data to allow for either 

mode of operation in a wastewater system.  

Table 1: Key SpecIQ™ Specifications 

Spec/Feature Unit 

Excitation Wavelength 532 nm 

Wavenumber Range (Shift) 100-5400 cm-1 

Resolution 6 cm-1 

Measurement Temp. Used 20°C 

pH Range Used 5-7 

User interaction/sample prep None 

Operational Pressure range <50 psi 

Liquid measurement volume ~4 cm3 

Onboard data processing? Yes 

Design for industrial/rugged use? Yes 

Communications/Interface Ethernet/SCADA 

Supported Power 110AC/28DC 

The following species were chosen for examination 

via Raman spectroscopy as examples of soluble 

species commonly found in industrial wastewaters, 

such as those from fossil fuel power plants flue gas 

desulfurization (FGD) processes or mining waste 

treatment.  
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 Selenate (SeO42-)  Bicarbonate 

(HCO3-) 

 Selenite(SeO32-)  Orthophosphate 

(H2PO42-) 

 Selenocyanate 

(SeCN) 

 Perchlorate  (ClO4-) 

 Boric acid 

(B(OH)3) 

 Chlorate (ClO3-) 

 Hypochlorous 

acid (HOCl) 

 Sulfite (SO32-) 

 Nitrate (NO3-)  Arsenate (H2AsO4-) 

 Nitrite (NO2-)  Chromate(CrO42-)  

 Sulfate (SO42-)  

While the process of Raman spectroscopy requires 

no sample preparation, standard concentrations 

of each species were prepared gravimetrically 

from commercially available reagents (Sigma 

Aldrich) dissolved in UV grade water. This included 

serial dilutions of each constituent at 

concentrations bounding those nominally 

encountered in wastewater treatment processes. 

During measurement, samples were contained in 

a Teflon-lined sample cell and measured from 

below through a sapphire window. 

All spectral data provided were processed and 

analyzed by performing a sequence of 

preprocessing, subsequent dimension reduction, 

and ML classification and regression. 

Preprocessing included the stabilization of signal 

fluctuations based on laser output and the 

removal of background signal. Principal 

component analysis (PCA) was performed as a 

dimensional reduction and to find the optimal 

variance in the data. A supervised ML model (via 

Scikit-learn) was implemented to train on the 

known dataset, analyzing their relationships. Scikit-

learn’s Python library was used for the entire ML 

process [5]. Scikit-learn is an open-source ML 

library that supports supervised and unsupervised 

learning. For simple identification of material, a 

classification model was then used that produced 

a confidence interval (CI) in the classification of 

the material spectra.  

Results 

Figure 1 shows overlapping preprocessed Raman 

spectra of chemical constituents of interest in 

slightly acidic FGD wastewaters. All samples were 

measured individually, at high concentrations (100 

mM), and plotted as the average of 20 scans. As 

expected, these aqueous anions often have 

multiple Raman peaks, of wildly different 

intensities, with subtle peak shifts depending on 

the measurement conditions (pH, temperature, 

ionic strength). To show that the simultaneous 

detection of different constituents can be made, 

regardless of differences in concentration, a large 

training dataset was first generated of each 

constituent on its own. Continuing work is still being 

applied to mixture training data.  

 

Figure 1: Raman spectra of aqueous anions common to 

FGD wastewaters. 

Figure 2 shows Raman spectra of select species in 

a range of concentrations, with every 100 

measurements averaged together. These spectra 

(along with others) were used as the basis of ML 

training datasets to allow for classification of 

chemical constituents and quantification down to 
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ppm (mg/L) levels. Lower limits of detection (LOD) 

for each species are provided in Table 2.  

Table 2: Example lower limit of detection 

based on 99% confidence interval from ML, for 

the utilized training dataset 

Chemical Component 
LOD 

 (mg/L) 

Selenate as Se(VI) 2 

Selenite as Se(IV) 4 

Selenocyanate as Se(-II) 4* 

Nitrate as N 14 

Nitrite as N 28 

Chlorate 35 

Perchlorate as Cl 18 

Sulfate 48 

Orthophosphate as P 33 

Bicarbonate 122 

Boric Acid as B 11 

Arsenate as As(V) 3* 

Chromate as Cr(VI) .041* 

*Detection limits of these species have not yet been fully 

investigated and are thus likely lower. 

When using ML algorithms, a common step in 

feature extraction is to separate the data into 

categories or numerical values of interest. PCA 

was applied to the training data above to reduce 

the number of features that the model had to 

process. This improved the efficiency of the model 

as it did not have to process as many pixels. PCA is 

a commonly used technique which transforms the 

features to new coordinate systems optimized to 

explain as much of the variance as possible 

among the different features of the data. By 

finding the features most effective in explaining 

the data, the method increases interpretability 

while at the same time minimizing information loss.  

After such processing, the data is reduced to a 

subset of components that are ranked by those 

that best explain variance. Figure 3 shows only 

three principle components which explained more 

than 99% of the variance, and the different 

chemical target groupings (by color) can be more 

easily discerned. By such a method, using more 

transform components, both the type and 

concentration of a target can be determined 

using the subsequent classifier algorithms applied 

to the transformed data. 

 

Figure 2: Selection of Raman spectra gathered as ML training data for classification and quantification. 
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Figure 3:  First three features of the data after 

dimensionality reduction, presented from two 

different perspectives to show grouping separation. 

Figure 4 shows the classification results in the form 

of a Confusion Matrix [6] for the thirteen species 

analyzed in the PCA preprocessing, when test 

data was passed through a SVC model. The 

Confusion Matrix is a table layout to help visualize 

the performance of the classification model. Each 

row of the matrix represents the instances in an 

actual class, while each column represents the 

instances in a predicted class. The name stems 

from the fact that it makes it easy to see if the 

system is confusing two classes (i.e. commonly 

mislabeling one as another). Matching rows and 

columns indicate the model’s predictions lined up 

with the truth. Where the prediction matches with 

a different row or label, then that incorrect 

classification is also evident on the Confusion 

Matrix.  

For this classifier, we observe greater than 95.8% 

accuracy on all chemical species. For example, a 

class with 97.5% accuracy, such as chromate, may 

be confused with perchlorate 2.5% of the time. This 

is just one example training-test dataset, and this 

accuracy is improved with more training data.  

 

Figure 4: Confusion matrix showing classification 

results of the sample dataset of 13 species in water. 

A value of 100 along the diagonal cells indicates 

100% matching of the predicted label with the true 

label. Values are rounded for visual clarity. 

Figure 5 shows an example of classification of a 

true mixture of FGD wastewater components. In 

this case, a Raman spectrum was measured of 

FGD wastewater effluent prior to 

physical/chemical treatment, provided by the 

Electric Power Research Institute and taken from a 

fossil fuel plant. The Sporian system was able to 

successfully classify three of the prominent Raman-

active wastewater constituents. Further training 
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data is being generated to continue to 

characterize and quantify complex mixtures of 

wastewater constituents.  

 

Figure 5: Raman spectrum of filtered, early-stage 

FGD wastewater effluent. 

Conclusions 

Contaminated wastewaters are a challenging 

environment for chemical composition monitoring. 

Sporian Microsystems’ Raman spectroscopy-based 

measurement system is an effective tool to 

provide in-line, real-time monitoring of wastewater 

compositions, and provide constituent 

classification and quantification. Instruments 

capable of continuous monitoring in harsh 

conditions and allowing for the use of ML-based 

data processing are ideally suited for performing 

such measurements. 
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