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Introduction 

Molten salts are an important class of fluids for a range of high-

temperature applications, including: thermal energy storage and 

transfer fluids for concentrating solar power (CSP) and molten salt 

nuclear reactors (MSR), molten carbonate fuel cells (MCFC), electrolysis, 

metals or waste processing, and ion-exchange (IOX) chemical glass 

strengthening. This is due to the unique properties of molten salts as 

stable fluids over a wide range of temperatures (up to 900°C), with low 

vapor pressures, and with high heat capacities.  

Eutectic salt blends have the benefit of very low melting points that are 

ideal for the most efficient use of molten salts. However, maintaining salt 

composition control of eutectics can be a challenge. Real-time molten 

salt composition monitoring is of significant value for molten-salt-based 

process control. There are few technical options for in-situ, high-

temperature-immersed, harsh-environment-tolerant, real-time 

monitoring that can provide chemical composition information, and 

most options can only provide partial compositional data.  

Raman spectroscopy is a powerful analytical technique that quickly 

gives highly specific information for the analysis of chemical 

compounds in a non-destructive manner. Raman-active species exhibit 

spectra with distinct peaks and provide “fingerprint” information on the 

vibrational transitions within a molecule by uniquely characterizing 
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sample volumes in bulk. Raman systems are easily 

portable and signals can be transmitted by optical 

fibers over long distances for remote analyses. 

These features make Raman spectroscopy ideal 

for implementing a robust, automated molecular 

identification system.  

One drawback of utilizing Raman spectral data for 

real-time monitoring of molten-salt-based process 

control is that the data can contain very high 

dimensionality per sample. Raman-scattered light 

returning from measuring a sample is dispersed by 

a diffraction grating and then captured by a 

Charge Coupled Device (CCD) in a spectrometer. 

Depending on the length of the CCD array, one 

measurement of molten salt can contain up to 

thousands of elements, or pixels, with the spectral 

information from the sample. Also, depending on 

the number of salt species targeted for 

identification and composition quantification, as 

well as the frequency of measurements during 

monitoring, the dataset can become very large 

and complex. Monitoring and analyzing the data 

by a human analyst would be very limited and 

time-consuming. 

Machine learning (ML), a subset of artificial 

intelligence, is a data-driven approach to analysis, 

where instead of fitting a physics-based theory to 

the data output, an algorithm is used to leverage 

relationships within the data to generate 

correlating models. ML is therefore suitable for a 

situation where the system outputs are unknown, 

hard to understand, or time-consuming to process 

by a human analyst. ML models can learn from 

Raman spectral data, identify patterns, and be 

able to make decisions with minimal human 

intervention. The models can rapidly process large 

amounts of high complexity Raman spectral data 

to be able to classify unknown chemical 

compounds and/or monitor the composition in 

real-time. 

In this application note, we’ll explore an example 

of how machine learning was applied to data 

from a high-temperature Raman spectroscopy 

monitoring instrument to generate a model that 

can classify different salt species within a molten 

salt sample. 

Experiment/Methods 

Data presented here was collected using a 

Sporian Microsystems SpecIQ™ High-Temperature 

Raman Fluid Composition Monitoring System. The 

Raman spectroscopy-based measurement system 

has the capability to provide in-situ, real-time 

monitoring of various molten salts in systems such 

as those used in CSP, nuclear power, fossil fuel 

energy storage, materials synthesis/processing, 

and metal making/finishing. Key system 

specifications are shown in Table 1, and the system 

is designed to operate in one of two possible 

modes: (1) as an autonomous monitoring device 

that measures and applies machine-learning-

based algorithms to provide classification of salt 

constituents and quantified concentrations to 

higher-level control systems, and (2) as a user 

operated instrument with specific feature/function 

control options.    

Table 1: Key SpecIQ™ specifications 
Spec/Feature Unit 

Excitation Wavelength 532 nm 

Wavenumber Range (Shift) 100-5400 cm-1 

Resolution 6 cm-1 

Communications Ethernet 

Measurement Temp. Used 25-500°C 

Max Measurement Temp. Capable 950°C 

Integration Times 0.1-1s 

Using the Raman Fluid Composition Monitoring 

System, we’ll explore how data generated from 

the user operated mode was used to build a 

machine learning model that could be deployed 

in the autonomous monitoring mode in the system. 

A typical machine learning process for Raman 

spectroscopy involves several stages in order to 

build a trained model that can be used to analyze 

unknown sample data[i]. The stages include data 
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collection, pre-processing, processing, training, 

validating/evaluating, and deploying the model.  

Data collection: In the user-operated mode, data 

from each of the molten salts were collected in 

the lab where chloride salts and various eutectic 

mixtures were melted between 240-900°C. All salt 

reagents were purchased from Sigma Aldrich with 

purity ≥ 98%.  Mixtures were prepared with 

reported %wt and ground with a mortar and 

pestle in a glove box under dry nitrogen to prevent 

water ingress/absorption by the salts.  Salt mixtures 

were melted in a quartz-lined, environmentally-

controlled crucible and heated to the desired 

temperature with an Ambrell precision induction 

heating system. The setup included the capability 

to purge a dry gas through the system during 

operation. The high-temperature Raman probe 

hardware was inserted into the heat zone of the 

system to monitor the mixture when molten, at 

temperatures ranging from 240 to 900°C. The 

instrument was configured to measure and send 

data to a database file that could be 

subsequently used to process/view resulting data 

Pre-processing: The Raman spectral data were 

‘cleaned’ and manipulated to optimize the data. 

In this stage, data noise was minimized using the 

measured laser output intensity, uninformative 

background signals were removed, and spectral 

intensity values were normalized and scaled. 

Preparing for hold-out validation of the model is 

also started at this stage, where the collected 

data was split into a training group and a test 

group, 70%/30% respectively. The test group was 

not seen by the model during training, so it would 

be tested as unknowns. 

Processing: The pre-processed data was 

transformed and reduced in dimensionality. One 

common technique includes principal component 

analysis (PCA), which transforms the spectral 

features into new coordinate systems that best 

explain the variance. As a result, the ML model did 

not need to train on all 2048 elements of the 

Raman Fluid Composition Monitoring System, and 

instead analyzed just 20 PCA components of each 

measurement. 

Training: After pre-processing, a classification 

model was trained on the processed training 

group using a supervised method. Relationships 

between the data and the known class labels of 

the training group were computed by the model. 

In this example, a support vector classification 

(SVC) model was implemented. The model is part 

of the set of support vector machines algorithms, 

which performs classification by mapping the data 

in the PCA-transformed components space into a 

new space separated by a plane that best 

separate the classes. 

Evaluation: Once trained, the classification model 

was applied to the test group, which was unknown 

to the model, and predicted the molten salt 

species in the group. Depending on the results, the 

model could be tuned by using different 

parameters in order to improve prediction 

accuracy or to reduce bias, such as over-fitting.  

Deployment: When the model had been trained 

and sufficiently tuned to optimize performance, 

both training and test group (all data) were used 

to train the model. The model was then packaged 

and deployed into the Raman Fluid Composition 

Monitoring System. The system could now be 

deployed into a CSP salt system and engage the 

autonomous monitoring mode in order to monitor 

the molten salt in real-time. 

Results from each step of the ML process are 

shown below using an example dataset of 

chloride salts that were tested at Sporian 

Microsystems. Scikit-learn’s Python library was used 

for the entire machine learning process[ii]. 

Results 

Figure 1 shows the raw Raman spectral data from 

the example dataset of chloride salts collected at 

Sporian. Each salt was scanned 100 times. Since 
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chloride salts are less Raman active with subtle 

Raman peak shifts observed below 300 cm-1[iii], 

the wavenumber range for the dataset was able 

to be reduced to a much smaller range than the 

full 5400 cm-1 available in the system. 

 
Figure 1: Raw Raman spectra from the example 

dataset of chloride salts; 100 sample lines per group 

The reduced data then went through the pre-

processing step of machine learning. After 

reducing sample-to-sample noise, smoothing, and 

background removal, the spectral data became 

much more distinct and more tightly overlapping 

in Figure 2.  

 
Figure 2: Pre-processed Raman spectral data, 

including noise reduction, smoothing, and 

background removal; 100 sample lines per group 

As each group contained about 100 sample 

measurements, these were then separated into 70 

training samples and 30 test samples per group. 

After pre-processing, PCA was applied to further 

reduce the number of elements. The PCA 

transform first trained on the training samples only, 

and then transformed the same training samples. It 

then transformed the test group using the trained 

transformation from the training samples. The first 

three PCA components, which explained >99% of 

the variance in the data, were plotted in a 3-

dimensional figure to show the relationships 

between the molten salt species. As shown in 

Figure 3, the tightly overlapping lines from each 

group transferred well into the PCA transformation. 

Measurements from each group, represented as 

single points, formed well-defined clusters that 

were clearly separated from others. 

 
Figure 3: Transformed Raman spectral data shown in 

the first 3 PCA components 

After processing, a classification model used the 

PCA-transformed training data to train its 

classification scheme. For this example, a support 

vector classification (SVC) was used as it was a 

good fit for data that grouped in clusters. Figure 4 

shows the classification results in the form of a 

Confusion Matrix [iv] when the test data was 

passed through the SVC model. The Confusion 

Matrix is a table layout to help visualize the 
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performance of the classification model. Each row 

represents the instances from the test group with 

the actual, true label while each column shows 

the model’s predicted label. Matching rows and 

columns indicate the model’s predictions lined up 

with the truth. Where the prediction matches with 

a different row or label, then that incorrect 

classification is also evident on the Confusion 

Matrix. These results show that the model was able 

to accurately predict all of the samples in the test 

group with 100% accuracy across all molten salt 

samples.  

 
Figure 4: Confusion matrix comparing classification 

model predictions to their true labels; values show 

ratio of predicted to true labels, where 1 = 100% 

After the model was trained, tested, and verified, 

all of the available data, including both the 

training and test groups, can be used to train the 

classification model. This allows the model to use 

as much data as possible to build the best model 

in a real operating scenario. Once fully trained, 

the model can be deployed in the Sporian 

Microsystems SpecIQ™ High Temperature Raman 

Fluid Composition Monitoring System. New data of 

molten salts in the SpecIQ Raman system can be 

immediately processed and predictions on the 

new samples can be obtained in real time. The 

deployment of the model can be performed 

remotely over the network, which enables the 

system to change or update its model as needed 

without interfering with operations. 

Conclusions 

Molten salts are a very challenging environment 

for chemical composition monitoring. Real-time 

molten salt composition monitoring is of significant 

value for industries using molten salts. Sporian 

Microsystems’ high-temperature, real-time, Raman 

spectroscopy-based measurement system is an 

effective tool to provide in-situ, real-time 

monitoring of various molten salt systems’ 

compositions, providing constituent and 

contaminant classification and quantification. 

Instruments capable of continuous monitoring in 

very harsh conditions and allowing for the use of 

machine-learning-based data processing are 

ideally suited for performing such measurements.  
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